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Abstract. The nonlinear oscillator model is useful to basically understand the most important properties
of nonlinear optical processes. It has been shown to give the correct asymptotic behaviour and to provide
the general features of harmonic generation to all orders, in particular dispersion relations and sum rules.
We investigate the properties of pump and probe processes using this model, and study those cases where
general theorems based on the holomorphic character of the Kubo response functions cannot be applied.
We show that it is possible to derive new sum rules and new Kramers-Krönig relations for the two lowest
moments of the real and of the imaginary part of the third order susceptibility and that new specific
contributions become relevant as the intensity of the probe increases. Since the analytic properties of the
susceptibility functions depend only upon the time causality of the system we are confident that these
results are not model dependent and therefore have a general validity, provided one substitutes for the
equilibrium values of the potential derivatives the density matrix expectation values of the corresponding
operators.

PACS. 42.65.An Optical susceptibility, hyperpolarizability – 42.65.Dr Stimulated Raman scattering;
CARS – 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and com-
plexity, and optical spatio-temporal dynamics – 78.20.Bh Theory, models, and numerical simulation –
78.20.Ci Optical constants (including refractive index, complex dielectric constant, absorption, reflection
and transmission coefficients, emissivity)

1 Introduction

The theoretical and experimental investigation of systems
responding to pump and probe optical beams is an im-
portant branch of research in solid state physics [1–6].
The most important nonlinear effect is the modifica-
tion of the optical response near each resonance, which
is often called the dynamical Stark effect [7–11]. Other
new effects are however present, such as the two-
photons absorption [12–15] and the stimulated Raman
scattering [16–20]. To completely interpret the above phe-
nomena detailed calculations are necessary [21–25] but in
general they are very difficult to perform with the re-
quired accuracy for realistic systems. For this reason gen-
eral properties of the nonlinear response functions are very
useful for the interpretation of experimental data and the
testing of appropriate models [26–28]. In particular, sum
rules and Kramers-Krönig (K.K.) relations are expected
to be of great help also in nonlinear optics, because they
only depend on general properties, such as time causality,
and must be verified by any physical system.

Sum rules and K.K. relations have been derived for
those specific nonlinear processes represented by the sus-
ceptibility χ(n) (ω1, ω2,−ω2, . . . , ω2,−ω2), which is the
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most relevant for weak probes (whose frequency is ω1)
since it is proportional to the (n − 1)/2th power of the
intensity of the pump beam. In fact it has the property of
being holomorphic in the upper complex half plane of the
variable ω1 thanks to Scandolo’s theorem [29].

When we consider nonlinear effects also due to the
probe beam the previous treatment is not valid anymore
and new poles in the nth order susceptibility functions ap-
pear in the upper complex plane. Scandolo’s theorem in
this case is not verified so that nothing can be said about
K.K. relations and sum rules from the previous analy-
ses. This is clearly explained in the book by Peiponen
et al. [30].

The main purpose of the present work is to study in
detail the third order susceptibility χ(3)(ω1) with a probe
beam and a pump beam, and to derive general properties
such as K.K. relations and sum rules. Since such general
properties do not depend on the microscopic description
of the nonlinear system, we adopt a simple anharmonic os-
cillator model along the line described by Bloembergen [1]
and Garrett [31,32] and previously adopted for the study
of harmonic generation [33] and for general studies of sum
rules in special cases [34–36]. Such a model allows a deriva-
tion of the most important features, considering all non-
linearities and including also the nonlinear effects arising
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from the probe beam. We will show that new K.K. rela-
tions and modified sum rules can be obtained, taking into
account optical rectification and considering the poles in
the upper complex plane, which originate from the probe
nonlinearities.

From previous experience with harmonic generation
processes [33] we feel confident that the results here ob-
tained can be extended to the quantum mechanical analy-
sis by substituting the expectation values of the potential
derivatives to their values at equilibrium used in the clas-
sical description.

In Section 2 we describe our model and give formulas
for χ(3)(ω1), while the higher orders expressions are given
in the Appendix. We analyze the structure of the third
order susceptibility and we show that the holomorphic and
non holomorphic contributions can be separated and their
respective properties can be considered. In Section 3 we
derive our modified sum rules. In Section 4 we derive the
K.K. relations and discuss their connection with the sum
rules. In Section 5 we present our conclusions.

2 The nonlinear oscillator model and the third
order susceptibility with non holomorphic
contributions

We adopt the Lorentz oscillator model with a general po-
tential energy mV (x) containing anharmonic terms, in-
troduce a damping γ and consider two incident optical
beams, one used as a probe of frequency ω1, and one as a
pump beam of frequency ω2:

E(t) = E1 e−iω1t +E2 e−iω2t + c.c., (1)

where c.c. indicates the complex conjugates of the previous
terms.

χ(3)(ω1) = χ(3)(ω1;ω1,−ω2, ω2) + χ(3)(ω1;ω1, O
(
−ω2, ω2)

)
+ χ(3)(ω1;ω2, ω1 − ω2) + χ(3)(ω1;−ω2, ω1 + ω2)

+ χ(3)(ω1;ω1, ω1,−ω1) + χ(3)(ω1;ω1, O
(
ω1,−ω1)

)
+ χ(3)(ω1;−ω1, 2ω1) (4a)

where χ(3)(ω1;ω1,−ω2, ω2) = −
[
∂4V (x)
∂x4

]
0

|E2|2e4N/m3

D(ω1)2D(ω2)D(−ω2)
, (4b)

χ(3)(ω1;ω1, O
(
ω2,−ω2)

)
=
[
∂3V (x)
∂x3

]2

0

|E2|2e4N/m3

ω2
0D(ω1)2D(ω2)D(−ω2)

, (4c)

χ(3)(ω1;±ω2, ω1 ∓ ω2) =
[
∂3V (x)
∂x3

]2

0

|E2|2e4N/m3

D(ω1)2D(ω2)D(−ω2)D(ω1 ∓ ω2)
, (4d–4e)

χ(3)(ω1;ω1,−ω1, ω1) = −1
2

[
∂4V (x)
∂x4

]
0

|E1|2e4N/m3

D(ω1)3D(−ω1)
, (4f)

χ(3)(ω1;−ω1, O
(
ω1,−ω1)

)
=
[
∂3V (x)
∂x3

]2

0

|E1|2e4N/m3

ω2
0D(ω1)3D(−ω1)

, (4g)

χ(3)(ω1;−ω1, 2ω1) =
1
2

[
∂3V (x)
∂x3

]2

0

|E1|2e4N/m3

D(ω1)3D(−ω1)D(2ω1)
· (4h)

Expanding the potential around the equilibrium posi-
tion we obtain the following equation of motion:

ẍ+ γẋ+ ω2
0x+

∞∑
n=3

[
∂nV (x)
∂xn

]
0

xn−1

(n− 1)!
=
eE(t)
m
· (2)

The solution of this equation can be obtained with an
iterative procedure as described in references [1,2] and
recently reported in detail in the book by Peiponen
et al. [30].

We obtain for the linear contribution:

P (1)(ωj) ≡ Ejχ(1)(ωj), j = 1, 2 (3a)

with the usual:

χ(1)(ωj) =
e2N/m

D(ωj)
(3b)

where:

D(ωj) = ω2
0 − ω2

j − iγωj . (3c)

A general expression of the nonlinear polarization
P (n)(rω1 + sω2) is given in the Appendix, where also a
formal analysis of the properties of such functions in the
complex ω1 plane is given. We here concentrate on the
third order susceptibility, and wish to prove in this par-
ticular case that general results like K.K. relations and
sum rules can be extended to include the contributions
which are nonholomorphic in the upper complex ω1 plane,
provided the poles are explicitly considered.

The expression of the χ(3)(ω1) can be obtained in the
usual way by successive iterations [1,30,33] and also fol-
lows from the general result given in the Appendix sub-
stituting n = 3, r = 1 and s = 0 in (A.1). We obtain:

see equations (4a–4h) below.
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Fig. 1. Real and Imaginary part of the contributions to
χ(3)(ω1) proportional to the intensity of the pump beam. The
peaks corresponding to dynamical Stark effect, two-photons
absorption and stimulated Raman scattering are indicated.
The values of the susceptibility are expressed in units of:

|E2|2
ω10

0

�
∂3V (x)

∂x3

�2

0

, taking for convenience: ω2
0

�
∂3V (x)

∂x3

�2

0

=
�
∂4V (x)

∂x4

�
0

. The parameters used are ω2 = 0.7ω0 and γ =

0.1ω0.

We observe that both holomorphic contributions, which
obey Scandolo’s theorem [26,29], and nonholomorphic
contributions are present. Among the holomorphic con-
tributions, the term (4b) gives the usual correction to the
linear resonance (dynamical Stark effect), the term (4c)
originates from optical rectification and is usually ne-
glected, while the contributions (4d) and (4e) include the
two-photon absorption and the stimulated Raman scatter-
ing. We notice that the holomorphic terms (4b) and (4c)
together constitute the main contribution χ(3)(ω1), holo-
morphic in the upper complex plane, as described in the
Appendix. The above described contributions have been
already given in the literature [2,30] and are discussed in
reference [30], where also the problems due to the mero-
morphic terms (4f), (4g) and (4h) are emphasized. We ob-
serve that the nonholomorphic terms are due to the non-
linear effects of the only probe beam, (4f) corresponding
to frequencies mixing, (4g) to optical rectification and (4h)
to the two-photon absorption of the probe beam.

Since the last three terms are nonholomorphic in the
upper complex ω1 plane their poles have to be explicitly
considered in order to derive sum rules and K.K. rela-
tions for the total χ(3)(ω1). We notice that two types
of contributions appear in the holomorphic terms and
in those which are not holomorphic, one proportional to
[∂4V (x)/∂4x]0, the other to [∂3V (x)/∂3x]20. The first is
due to the sum of three frequencies, the second to the
sum of two frequencies, one of which is already a combi-
nation of two. These are the only way possible ways to
obtain a third order susceptibility χ(3)(ω1). Obviously, if
the system has particular symmetries, some terms can be
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Fig. 2. Real and Imaginary part of the term of χ(3)(ω1) pro-
portional to the probe intensity (nonholomorphic). One can
observe contributions to the dynamical Stark effect and to the
two-photon absorption at ω0/2. The units and the parameters
are the same as in Figure 1, except for the replacement of |E2|2
with |E1|2.

equal to zero; for instance in the case of inversion symme-
try all the odd derivatives of the potential are zero so that
only terms (4b) and (4f) survive.

We can notice that the only poles of the upper complex
plane appearing in the last three terms (4f), (4g) and (4h)
correspond to the solutions of D(−ω1) = 0, i.e.:

ω1 = ±c± id = ±
(
ω2

0 − γ2/4
)1/2

+ iγ/2. (5)

We consider the above poles in order to obtain sum rules
and K.K. relations of general validity for χ(3)(ω1). For con-
venience we present in Figures 1 and 2 a visual description
of the terms proportional to |E2|2 and |E1|2 respectively.

3 Sum rules

The general purpose of sum rules is to find the values
of the moments of the real and of the imaginary part of
the susceptibility. This is possible up to a given moment,
above which the integral diverges. Before deriving the sum
rules by direct calculations we want to show how it is pos-
sible to find linear relations between the four sum rules
referred to the first two moments of the third order sus-
ceptibility χ(3)(ω1) just by considering the following fun-
damental property of all susceptibility functions:

χ(n)(−ω∗) =
(
χ(n)(ω)

)∗
. (6)

This property requires that if χ(n)(ω) has a pole in α,
it must have another pole in −α∗, and that <

(
χ(n)(ω)

)
is even while =

(
χ(n)(ω)

)
is odd with respect to ω if ω

belongs to the real space. So we obtain for the principal
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parts of the integrals on the real ω axis:

P

+∞∫
−∞

dω ω2mχ(n)(ω) = 2P

+∞∫
0

dω ω2m<
(
χ(n)(ω)

)
,

(7a)

P

+∞∫
−∞

dω ω2m+1χ(n)(ω) = 2iP

+∞∫
0

dω ω2m+1=
(
χ(n)(ω)

)
,

(7b)

for any integer m allowed by the convergence of the inte-
grals.

Now we restrict our analysis to the case n = 3, where
some conclusions can be easily obtained.

Considering our expression (3c), we observe that
D(−ω∗) = D(ω)∗ since it is proportional to the inverse of
a first order susceptibility (3b). As a consequence we find
that the two residues of the poles (5) are one the opposite
of the complex of the other. We denote the values of the
two residues as a+ ib and −a+ ib, corresponding respec-
tively to the poles at c+ id and −c+ id. We define S0 and
S2 respectively the zeroth and the second moment of the
real part, while S1 and S3 the first and the third moment
of the imaginary part of the χ(3)

n.h.(ω1), i.e. the nonholo-
morphic contribution to the total susceptibility χ(3)(ω1).
Taking into account that the only the non-zero value of
the moments of the holomorphic contributions is the third
moment of the imaginary part [26], when we consider S0,
S1 and S2 we can write χ(3)(ω1) instead of χ(3)

n.h.(ω1) with-
out any difference. Then we obtain:

P

+∞∫
−∞

dω1χ
(3)(ω1) = 2P

+∞∫
0

<
(
χ(3)(ω)

)
= 2S0

= 2πi(a+ ib− a+ ib) = −4πb, (8)

P

+∞∫
−∞

dω1ω1χ
(3)(ω1) = 2iP

+∞∫
0

dω1ω1=
(
χ(3)(ω1)

)
= 2iS1

= 2πi(a+ ib)(c+ id) + 2πi(−a+ ib)(−c+ id)
= 4πi(ac− bd). (9)

We have found how to express the real and imaginary part
of the values of the residues of the susceptibility function
as linear combinations of S0 and S1. Since S2 and S3 are
functions of the residues values and of the poles only, it
is clear that it is possible to obtain for them an expres-
sion which depends only on the two lowest moments. The
explicit calculation for S2 gives:

P

+∞∫
−∞

dω1ω
2
1χ

(3)(ω1) = 2P

+∞∫
0

dω1ω
2
1<
(
χ(3)(ω1)

)
= 2S2

= 2πi(a+ ib)(c+ id)2 + 2πi(−a+ ib)(−c+ id)2

= −4π
(
2acd+ b(c2 − d2)

)
. (10)

Substituting the values of a and b as obtained in (8)
and (9) we obtain:

S2 = S0(c2 + d2)− 2dS1 (11)

which, using the expression (5) for c and d, becomes:

S2 = ω2
0S0 − γS1. (12)

Performing a similar calculation for the third moment of
the imaginary part we χ(3)

n.h.(ω1):

P

+∞∫
−∞

dω1ω
3
1χ

(3)
n.h.(ω1) = 2iP

+∞∫
0

ω3
1=
(
χ

(3)
n.h.(ω1)

)
= 2iS3

= 2πi(a+ ib)(c+ id)3 + 2πi(−a+ ib)(−c+ id)3

= 4πi
(
ac(c2 − 3d2)− bd(3c2 − d2)

)
. (13)

Performing the same substitutions as above we obtain:

S3 = 2S0d(c2 + d2) + S1(c2 − 3d2). (14)

Using expression (5) we have:

S3 = S0γω
2
0 + S1(ω2

0 − γ2). (15)

Having established the above general results we proceed to
the direct calculations of the moments of the third order
susceptibility. We observe that we can express the sum
rules as

P

∞∫
0

dω1ω
2m+1
1 =

(
χ(3)(ω1)

)
(16)

and

P

∞∫
0

dω1ω
2m
1 <

(
χ(3)(ω1)

)
(17)

with m = 0, 1 since higher moments of the susceptibility
would diverge because the terms (4b) and (4c) asymptot-
ically decrease as ω−4

1 . We perform the integrals of the
terms (4f), (4g) and (4h) closing the contour in the up-
per complex ω1 half-plane and summing all the residues of
the poles inside the semicircle considered, while we use the
K.K. relations and the superconvergence theorem to com-
pute the contributions of the holomorphic terms [26,27],
obtaining immediately that all the moments of the
terms (4d) and (4e) are zero because of their fast asymp-
totic decrease (ω−6

1 ). After lengthy calculations we fi-
nally obtain the general sum rules of the total suscep-
tibility χ(3)(ω1)

see equations (18–21) on top of next page.

We underline that the only parts proportional to the inten-
sity of the pump beam are the first two terms of the third
momentum of the imaginary part, which originate from
the holomorphic contribution χ(3)(ω1). They correspond
to those previously derived [27]. However another term,
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P

∞Z
0

dω1<
�
χ(3)(ω1)

�
= −

π|E1|2
�
γ2 − ω2

0

�
e4N/m3

16γ3ω6
0

�
∂4V (x)

∂x4

�
0

+
π|E1|2

�
14γ4 − 11γ2ω2

0 − 5ω4
0

�
e4N/m3

48γ3ω8
0 (2γ2 + ω2

0)

�
∂3V (x)

∂x3

�2

0

(18)

P

∞Z
0

dω1ω
2
1<
�
χ(3)(ω1)

�
=
π|E1|2e4N/m3

16γ3ω2
0

�
∂4V (x)

∂x4

�
0

−
π|E1|2

�
14γ2 + 5ω2

0

�
e4N/m3

48γ3ω4
0 (2γ2 + ω2

0)

�
∂3V (x)

∂x3

�2

0

(19)

P

∞Z
0

dω1ω1=
�
χ(3)(ω1)

�
= −π|E1|2e4N/m3

16γ2ω4
0

�
∂4V (x)

∂x4

�
0

+
π|E1|2

�
14γ2 + 3ω2

0

�
e4N/m3

48γ2ω6
0 (2γ2 + ω2

0)

�
∂3V (x)

∂x3

�2

0

(20)

P

∞Z
0

dω1ω
3
1=
�
χ(3)(ω1)

�
=

π|E2|2e4N/m3

2
�
γ2ω2

2 + (ω2
2 − ω2

0)
2�
�
∂4V (x)

∂x4

�
0

− π|E2|2e4N/m3

2ω2
0

�
γ2ω2

2 + (ω2
2 − ω2

0)
2�
�
∂3V (x)

∂x3

�2

0

− π|E1|2e4N/m3

24γ2ω2
0

�
2γ2 + ω2

0

�
�
∂3V (x)

∂x3

�2

0

. (21)

proportional to the probe intensity, appears in this mo-
ment. This third term is S3, while we can identify (18) as
S0, (19) as S2, (20) as S1. So all the Si with i = 0, 1, 2, 3 are
proportional to the probe intensity. We have also the con-
firmation that all these terms obey the linear relations (12)
and (15), as can easily be checked with algebraic calcula-
tions.

4 Kramers-Krönig relations

It is useful to verify the existence of specific K.K. rela-
tions and to show how they are modified with respect to
those already obtained for the holomorphic contribution
χ(3)(ω1) [26].

The method is to consider explicitly the poles in the
upper complex plane and to perform the Cauchy inte-
grals for all the moments which are allowed by the asymp-
totic behaviour. The asymptotic behaviour of χ(3)(ω1) is
∝ ω−4

1 , so that the moments to be considered are χ(3)(ω1)
and ω2

1χ
(3)(ω1). We write explicitly the two Cauchy inte-

grals, considering the poles at (c + id) and at (−c + id).
We obtain, taking into account the relations between the
residues and the results of the sum rules shown in the
previous section:

P

+∞∫
−∞

dω1
χ(3)(ω1)
ω1 − ω

= πiχ(3)(ω) + 2πi
(

a+ ib
c+ id− ω +

−a+ ib
−c+ id− ω

)

= πiχ(3)(ω) +
2(ω − iγ)S0

D(−ω)
+

2iS1

D(−ω)
(22)

and

P

+∞∫
−∞

dω1
ω2

1χ
(3)(ω1)

ω1 − ω
= πiω2χ(3)(ω)

+ 2πi
(

(a+ ib)(c+ id)2

c+ id− ω +
(a+ ib)(−c+ id)2

−c+ id− ω

)

= πiω2χ(3)(ω) +
2(ω − iγ)S2

D(−ω)
+

2iS3

D(−ω)

= πiω2χ(3)(ω) +
2ωω2

0S0

D(−ω)
+

2i(ω2
0 + iγω)S1

D(−ω)
· (23)

We can separate real and imaginary part of the preceding
expressions and obtain two couples of K.K. relations in
the usual form, the first one originating from (22):

<
(
χ(3)(ω)

)
=

2
π
P

+∞∫
0

dω1

ω1=
(
χ(3)(ω1)

)
ω2

1 − ω2

−2ω
π
S0=

(
1

D(−ω)

)
− 2
π

(S1 − γS0)<
(

1
D(−ω)

)

=
(
χ(3)(ω)

)
= −2ω

π
P

+∞∫
0

dω1

<
(
χ(3)(ω1)

)
ω2

1 − ω2

+
2ω
π
S0<

(
1

D(−ω)

)
− 2
π

(S1 − γS0)=
(

1
D(−ω)

)

(24)
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and the second one originating from (23):

ω2<
(
χ(3)(ω)

)
=

2
π
P

+∞∫
0

dω1

ω3
1=
(
χ(3)(ω1)

)
ω2

1 − ω2

−2ω
π
S2=

(
1

D(−ω)

)
+

2
π

(S3 − γS2)<
(

1
D(−ω)

)

ω2=
(
χ(3)(ω)

)
= −2ω

π
P

+∞∫
0

dω1

ω2
1<
(
χ(3)(ω1)

)
ω2

1 − ω2

+
2ω
π
S2<

(
1

D(−ω)

)
− 2
π

(S3 − γS2)=
(

1
D(−ω)

)
·

(25)

Explicitating S2 and S3 with the help of expressions (12)
and (15) we obtain the following K.K. expression in terms
of the lowest moments:

ω2<
(
χ(3)(ω)

)
=

2
π
P

+∞∫
0

dω1

ω3
1=
(
χ(3)(ω1)

)
ω2

1 − ω2

−2ω
π

(
ω2

0S0 − γS1

)
=
(

1
D(−ω)

)
+

2
π
ω2

0S1<
(

1
D(−ω)

)
ω2=

(
χ(3)(ω)

)
= −2ω

π
P

+∞∫
0

dω1

ω2
1<
(
χ(3)(ω1)

)
ω2

1 − ω2

+
2ω
π

(
ω2

0S0 − γS1

)
<
(

1
D(−ω)

)
− 2
π
ω2

0S1=
(

1
D(−ω)

)
·

(26)

It is interesting to note the perfect symmetry between
the two K.K. relations (24) and (25) with respect to the
terms originating from non-holomorphic contributions: it
can be observed a clear correspondence between S0 and
S1 in the (24) with respectively S2 and S3 in the (25).
We can observe that all the terms originating from non-
holomorphic contributions are linear with respect to the
Si with i = 0, 1, 2, 3.

The nonlinear K.K. relations we have here obtained
are more general than the ones given before, and in each
of them we have also terms which are proportional to
the intensity of the probe beam and are directly related
to the two lowest moments of the susceptibility S0 and
S1. Our procedure is a direct one, and avoids the use
of the maximum entropy hypothesis [37,38] adopted by
Peiponen [30,39–41].

Our K.K. analyses, as given by (24) and (25), are ana-
lytically complete and overcome the difficulties explicitly
shown in reference [30] (see for instance Fig. 3.6 on p. 60

and Fig. 5.5 on p. 92). In comparison with the results
of the maximum entropy method shown in Figure 5.5 on
page 92 in reference [30], our results reproduce exactly the
relations between the real and the imaginary part of the
susceptibility, since no hypotheses or approximations have
been made.

5 Conclusions

We wish to summarize the main results obtained above as
follows.

The anharmonic oscillator model has been used to de-
rive general expressions for the nonlinear susceptibility
with pump and probe optical beams. The lowest order
susceptibility χ(3)(ω1) is shown to contain terms propor-
tional to |E2|2 and also terms proportional to |E1|2. The
former are holomorphic in the upper complex plane with
respect to the variable ω1 and consequently obey sum rules
and Kramers-Krönig relations of the type derived previ-
ously. The latter contain poles in the upper complex ω1

plane, and give contributions to the nonlinear sum rules
and K.K. relations which had been formerly neglected.
These contributions are shown to depend on the zero and
first moment of the susceptibility only.

The above contributions to the sum rules have been
shown to depend on the derivatives of the potential at
the equilibrium position, the third order susceptibility de-
pending on the fourth order derivative and on the square
of the third order derivative.

The above results are expected to be of general sig-
nificance, in spite of the simplicity of the model adopted,
because they are only determined by the analytic prop-
erties of the response function due to time causality. It
can be shown in fact that the leading holomorphic term
here considered, χ(3)(ω1;ω1,−ω2, ω2), gives the same re-
sult in the most general physical system, treated with the
Kubo response function [42], provided one substitutes the
expectation values of the derivatives for the values at the
equilibrium position., and one considers the correspond-
ing tensor which obtains from the spatial directions of the
applied fields.

The results here presented can be of interest for a de-
tailed analysis of experimental data because they show
explicitly the dependence on the intensity of the probe
beam itself which must appear in the third order suscep-
tibility χ(3)(ω1). Experimentally it is also possible to sep-
arate the contribution proportional to the pump intensity
by using modulation techniques so that the holomorphic
and the nonholomorphic contributions can be separately
measured. We suggest experiments where both the probe
frequency and the probe intensity can be varied, so as to
verify the appearance of the additional contributions in
the sum rules and K.K. relations.

We are grateful to S. Scandolo and to G. La Rocca for sugges-
tions and useful discussions.
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Appendix

In this appendix we present the general formula for the
nth order polarization at the generic frequency rω1 + sω2,
as derived from the iterative procedure described in refer-
ence [33]:

see equation (A.1a) above
with the conditions:

1 ≤ j ≤ l, 1 ≤ h, h′ ≤ tj (1 ≤ ij,h < ij+1,h′ < n)

and
(
h 6= h′ =⇒ (pj,h 6= pj,h′) or (qj,h 6= qj,h′)

)
.

(A.1b)

The frequency considered (rω1 + sω2) imposes the follow-
ing constraint:

l∑
j=1

tj∑
h=1

(pj,hω1 + qj,hω2) kj,h = rω1 + sω2, (A.1c)

and the order to which polarization is considered gives:

l∑
j=1

tj∑
h=1

kj,hij,h = n. (A.1d)

In order to consider pump and probe experiments we spe-
cialize the expression for the probe frequency imposing
r = 1 and s = 0 in expression (4) and define the follow-
ing quantity, which immediately results to be limited to
odd n:

χ(n)(ω1) ≡ P (n)(ω1)
E1

· (A.2)

The above expressions contain terms which are predom-
inant for an intense pump beam and a weak probe, and
are holomorphic in the upper complex ω1 plane. This cor-
responds to the contribution considered in the Kubo [42]
expression and used in [26] to derive K.K. relations. Such
terms are:

see equation (A.3a) above.

with the conditions:

1 ≤ j ≤ l, 1 ≤ h, h′ ≤ tj (1 ≤ ij,h < ij+1,h′ < n)

and
(
h 6= h′ =⇒ (qj,h 6= qj,h′)

)
, (A.3b)

and the usual constraints regarding respectively order of
polarization and frequency:

l∑
j=1

tj∑
h=1

kj,hij,h = n− 1 (A.3c)

l∑
j=1

tj∑
h=1

qj,hkj,h = 0 (A.3d)

with an additional condition to select those terms in the
summation (6a) which are not functions of ω1:

∂
(
P (ij,s) (βj,sω2)

)
∂ω1

= 0. (A.3e)

The main properties of above described terms are the fol-
lowing:

i) they are proportional to the intensity of the pump
beam to the highest possible power, the (n− 1)/2th;

ii) they are holomorphic with respect to the variable ω1

in the upper complex half-plane;
iii) they have the slowest possible decrease at infinity with

respect to ω1 (∝ ω−4
1 ).

The first and third properties give them the predominance
over the other terms of the same order; the second and
the third one allow us to write two K.K. relations because
of Titmarsch’s theorem, one for χ(n)(ω1) and the second
one for ω2

1χ
(n)(ω1), as shown in reference [26]. It is also

possible to prove that the summation in (6a) for every
n results to be real by using the relation P (m)(−ν∗) =(
P (m)(ν)

)∗
, which holds for every m, and rearranging
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the terms in the summation so that conjugate terms ap-
pear in couple.

The preceding considerations and the analysis of the
asymptotic behaviour as obtained from K.K. relations and
from expression (A.3) allow us to derive sum rules for the
moments of the χ(n)(ω1) up to the third moment of the
imaginary part, which is the only one different from zero.
Here we give its explicit expression:

see equation (A.4) above.

with the same constraints (A.3b-e) in the summations. It
can easily verified that the above results are in agreement
with the general results obtained previously for the third
order susceptibility [26].
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14. D. Fröhlich, Phys. Scripta. T 35, 125 (1991).
15. C.J. Foot, B. Couillard, R.G. Beausoleil, T. Hänsch, Phys.
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